692 research outputs found

    Ionized Gas Kinematics and Morphology in Sgr B2 Main on 1000 AU Scales

    Full text link
    We have imaged the Sgr B2 Main region with the Very Large Array in the BnA configuration (θbeam\theta_{beam} = 0\farcs13) in both the H52α\alpha (45.453 GHz) radio recombination line (RRL) and 7 mm continuum emission. At a distance of 8500 pc, this spatial resolution corresponds to a physical scale of 0.005 pc (\sim1100 AU). The current observations detect H52α\alpha emission in 12 individual ultracompact (UC) and hypercompact (HC) HII regions. Two of the sources with detected H52 α\alpha emission have broad (Δ\DeltaVFWHM_{FWHM}\sim50 \kms) recombination lines, and two of the sources show lines with peaks at more than one velocity. We use line parameters from the H52α\alpha lines and our previous H66α\alpha line observations to determine the relative contribution of thermal, pressure and kinematic broadening, and electron density. These new observations suggest that pressure broadening can account for the broad lines in some of the sources, but that gas motions (e.g. turbulence, accretion or outflow) contribute significantly to the broad lines in at least one of the sources (Sgr B2 F3).Comment: 10 pages, 2 figure

    Broad-line Balmer Decrements in Blue Active Galactic Nuclei

    Full text link
    We have investigated the broad-line Balmer decrements (Halpha/Hbeta) for a large, homogeneous sample of Seyfert 1 galaxies and QSOs using spectroscopic data obtained in the Sloan Digital Sky Survey. The sample, drawn from the Fourth Data Release, comprises 446 low redshift (z < 0.35) active galactic nuclei (AGN) that have blue optical continua as indicated by the spectral slopes in order to minimize the effect of dust extinction. We find that (i) the distribution of the intrinsic broad-line Halpha/Hbeta ratio can be well described by log-Gaussian, with a peak at Halpha/Hbeta=3.06 and a standard deviation of about 0.03 dex only; (ii) the Balmer decrement does not correlate with AGN properties such as luminosity, accretion rate, and continuum slope, etc.; (iii) on average, the Balmer decrements are found to be only slightly larger in radio-loud sources (3.37) and sources having double-peaked emission-line profiles (3.27) compared to the rest of the sample. We therefore suggest that the broad-line Halpha/Hbeta ratio can be used as a good indicator for dust extinction in the AGN broad-line region; this is especially true for radio-quiet AGN with regular emission-line profiles, which constitute the vast majority of the AGN population.Comment: To appear in MNRAS. The data and the fitted parameters for the decomposed spectral components (continuum, FeII and other emission lines) of the 446 blue AGNs are available at http://staff.ustc.edu.cn/~xbdong/Data_Release/blueAGN_DR4

    First VLT/X-shooter spectroscopy of early-type stars outside the Local Group

    Get PDF
    As part of the VLT/X-shooter science verification, we obtained the first optical medium-resolution spectrum of a previously identified bright O-type object in NGC55, an LMC-like galaxy at a distance of \sim2.0 Mpc. Based on the stellar and nebular spectrum, we investigate the nature and evolutionary status of the central object(s) and its influence on the surrounding interstellar medium. We conclude that the source, NGC55_C1_31, is a composite object, likely a stellar cluster, which contains one or several hot (T_eff \simeq 50000 K) WN stars with a high mass-loss rate (\sim3 \times 10^{-5} M_\odot yr^{-1}) and a helium-rich composition (N_He/N_H = 0.8). The visual flux is dominated by OB-type (super)giant stars with T_eff \sim< 35000 K, solar helium abundance (N_He/N_H = 0.1), and mass-loss rate \sim2 \times 10^{-6} M_\odot yr^{-1}. The surrounding H II region has an electron density n_e < 10^2 cm^{-3} and an electron temperature T(OIII) \simeq 11500 \pm 600 K. The oxygen abundance of this region is [O/H] = 8.18 \pm 0.03 which corresponds to Z = 0.31 \pm 0.04 Z_\odot. We observed no significant gradients in T(OIII), n_e or [O/H] on a scale of 73 pc extending in four directions from the ionising source. The properties of the HII region can be reproduced by a CLOUDY model which uses the central cluster as ionising source, thus providing a self-consistent interpretation of the data. We also report on the serendipitous discovery of HeII nebular emission associated with the nearby source NGC55_C2_35, a feature usually associated with strong X-ray sources.Comment: 12 pages, 10 figures, accepted for publication in Monthly Notices of the Royal Astronomical Society; the definitive version will be available at wwww.blackwell-synergy.co

    The relationship between [OIII]5007A equivalent width and obscuration in AGN

    Full text link
    In this paper we study the relationship between the equivalent width (EW) of the [OIII]5007A narrow emission line in AGN and the level of obscuration. To this end, we combine the results of a systematic spectral analysis, both in the optical and in the X-rays, on a statistically complete sample of ~170 X-ray selected AGN from the XMM-Newton Bright Serendipitous Source sample (XBS). We find that the observed large range of [OIII]5007A equivalent widths observed in the sample (from a few A up to 500A) is well explained as a combination of an intrinsic spread, probably due to the large range of covering factors of the Narrow Line Region, and the effect of absorption. The intrinsic spread is dominant for EW below 40-50A while absorption brings the values of EW up to ~100-150A, for moderate levels of absorption (AV~0.5-2 mag) or up to ~500A for AV>2 mag. In this picture, the absorption has a significant impact on the observed EW also in type~1 AGN. Using numerical simulations we find that this model is able to reproduce the [OIII]5007A EW distribution observed in the XBS sample and correctly predicts the shape of the EW distribution observed in the optically selected sample of QSO taken from the SDSS survey.Comment: 7 pages, 5 figures. Accepted for publication in MNRA

    Stellar disks of Collisional Ring Galaxies I. New multiband images, Radial intensity and color profiles, and confrontation with N-body simulations

    Full text link
    We present new multi-band imaging data in the optical (BVRI and Halpha) and near infrared bands (JHK) of 15 candidate ring galaxies from the sample of Appleton & Marston (1997). We use these data to obtain color composite images, global magnitudes and colors of both the ring galaxy and its companion(s), and radial profiles of intensity and colors. We find that only nine of the observed galaxies have multi-band morphologies expected for the classical collisional scenario of ring formation, indicating the high degree of contamination of the ring galaxy sample by galaxies without a clear ring morphology. The radial intensity profiles, obtained by masking the off-centered nucleus, peak at the position of the ring, with the profiles in the continuum bands broader than that in the Halpha line. The images as well as the radial intensity and color profiles clearly demonstrate the existence of the pre-collisional stellar disk outside the star-forming ring, which is in general bluer than the disk internal to the ring. The stellar disk seems to have retained its size, with the disk outside the ring having a shorter exponential scale length as compared to the values expected in normal spiral galaxies of comparable masses. The rings in our sample of galaxies are found to be located preferentially at around half-way through the stellar disk. The most likely reason for this preference is bias against detecting rings when they are close to the center (they would be confused with the resonant rings), and at the edge of the disk the gas surface density may be below the critical density required for star formation. Most of the observed characteristics point to relatively recent collisions (<80 Myr ago) according to the N-body simulations of Gerber et al. (1996).Comment: To appear in AJ issue of September 2008. High resolution color image of Figure 2 and other supplementary images are available at http://www.inaoep.mx/~ydm/rings

    Cosmic rays and the primordial gas

    Full text link
    One of the most outstanding problems in the gravitational collapse scenario of early structure formation is the cooling of primordial gas to allow for small mass objects to form. As the neutral primordial gas is a poor radiator at temperatures (T\le10^4\unit{K}), molecular hydrogen is needed for further cooling down to temperatures (T\sim100\unit{K}). The formation of molecular hydrogen is catalyzed by the presence of free electrons, which could be provided by the ionization due to an early population of cosmic rays. In order to investigate this possibility we developed a code to study the effects of ionizing cosmic rays on the thermal and chemical evolution of primordial gas. We found that cosmic rays can provide enough free electrons needed for the formation of molecular hydrogen, and therefore can increase the cooling ability of such primordial gas under following conditions: A dissociating photon flux with (F<10^{-18}\unit{erg cm^{-2} Hz^{-1} s^{-1}}), initial temperature of the gas (\sim10^{3}\unit{K}), total gas number densities (n\ge1\unit{cm^{-3}}), Cosmic ray sources with (\dot{\epsilon}_{CR}>10^{-33}\unit{erg cm^{-3} s^{-1}}).Comment: 15 pages, 5 figure

    From cusps to cores: a stochastic model

    Full text link
    The cold dark matter model of structure formation faces apparent problems on galactic scales. Several threads point to excessive halo concentration, including central densities that rise too steeply with decreasing radius. Yet, random fluctuations in the gaseous component can 'heat' the centres of haloes, decreasing their densities. We present a theoretical model deriving this effect from first principles: stochastic variations in the gas density are converted into potential fluctuations that act on the dark matter; the associated force correlation function is calculated and the corresponding stochastic equation solved. Assuming a power law spectrum of fluctuations with maximal and minimal cutoff scales, we derive the velocity dispersion imparted to the halo particles and the relevant relaxation time. We further perform numerical simulations, with fluctuations realised as a Gaussian random field, which confirm the formation of a core within a timescale comparable to that derived analytically. Non-radial collective modes enhance the energy transport process that erases the cusp, though the parametrisations of the analytical model persist. In our model, the dominant contribution to the dynamical coupling driving the cusp-core transformation comes from the largest scale fluctuations. Yet, the efficiency of the transformation is independent of the value of the largest scale and depends weakly (linearly) on the power law exponent; it effectively depends on two parameters: the gas mass fraction and the normalisation of the power spectrum. This suggests that cusp-core transformations observed in hydrodynamic simulations of galaxy formation may be understood and parametrised in simple terms, the physical and numerical complexities of the various implementations notwithstanding.Comment: Minor revisions to match version to appear in MNRAS; Section~2.3 largely rewritten for clarit

    HR Del remnant anatomy using 2-D spectral data and 3-D photoionization shell models

    Full text link
    The HR Del nova remnant was observed with the IFU-GMOS at Gemini North. The spatially resolved spectral data cube was used in the kinematic, morphological and abundance analysis of the ejecta. The line maps show a very clumpy shell with two main symmetric structures. The first one is the outer part of the shell seen in H-alpha, that forms two rings projected in the sky plane. These ring structures correspond to a closed hourglass shape, first proposed by Harman and O'Brien (2003). The equatorial emission enhancement is caused by the superimposed hourglass structures in the line of sight. The second structure seen only in the [OIII] and [NII] maps is located along the polar directions inside the hourglass structure. Abundances gradients between the polar caps and equatorial region were not found. However, the outer part of the shell seems to be less abundant in Oxygen and Nitrogen than the inner regions. Detailed 2.5D photoionization modeling of the 3D shell was performed using the mass distribution inferred from the observations and the presence of mass clumps. The resulting model grids are used to constrain the physical properties of the shell as well as the central ionizing source. A sequence of 3D clumpy models including a disk shaped ionization source is able to reproduce the ionization gradients between polar and equatorial regions of the shell. Differences between shell axial ratios in different lines can also be explained by aspherical illumination. A total shell mass of 9 x 10-4 Msun is derived from these models. We estimate that 50% to 70% of the shell mass is contained in neutral clumps with density contrast up to a factor of 30.Comment: 31 pages 12 figures 4 tables title correcte

    The final two redshifts for radio sources from the equatorial BRL sample

    Full text link
    Best, Rottgering and Lehnert (1999, 2000a) defined a new sample of powerful radio sources from the Molonglo Reference Catalogue, for which redshifts were compiled or measured for 177 of the 178 objects. For the final object, MRC1059-010 (3C249), the host galaxy is here identified using near-infrared imaging, and the redshift is determined from VLT spectroscopy. For one other object in the sample, MRC0320+053 (4C05.14), the literature redshift has been questioned: new spectroscopic observations of this object are presented, deriving a corrected redshift. With these two results, the spectroscopic completeness of this sample is now 100%. New redshifts are also presented for PKS0742+10 from the Wall & Peacock 2.7 GHz catalogue, and PKS1336+003 from the Parkes Selected Regions. PKS0742+10 shows a strong neutral hydrogen absorption feature in its Lyman-alpha emission profile.Comment: 4 pages. LaTeX. Accepted for publication in MNRA

    Deep near-infrared imaging of the HE0450-2958 system

    Full text link
    The QSO HE0450-2958 and the companion galaxy with which it is interacting, both ultra luminous in the infrared, have been the subject of much attention in recent years, as the quasar host galaxy remained undetected. This led to various interpretations on QSO and galaxy formation and co-evolution, such as black hole ejection, jet induced star formation, dust obscured galaxy, or normal host below the detection limit. We carried out deep observations in the near-IR in order to solve the puzzle concerning the existence of any host. The object was observed with the ESO VLT and HAWK-I in the near-IR J-band for 8 hours. The images have been processed with the MCS deconvolution method (Magain, Courbin & Sohy, 1998), permitting accurate subtraction of the QSO light from the observations. The compact emission region situated close to the QSO, called the blob, which previously showed only gas emission lines in the optical spectra, is now detected in our near-IR images. Its high brightness implies that stars likely contribute to the near-IR emission. The blob might thus be interpreted as an off-centre, bright and very compact host galaxy, involved in a violent collision with its companion.Comment: 4 pages, 3 figures, accepted for publication in A&
    corecore